Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1232589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023920

RESUMO

The historical meeting between originally American people, European colonizers, and slaved peoples from Africa in the biome Pampa in South Brazil and Uruguay involved a cultural syncretism and a great genetic diversity of landraces of cultivated species. Genetic richness evolved by selection and cultural processes in response to different environments, cultural backgrounds, and needs. This review summarized the knowledge on vegetable and maize landraces in South Brazilian and Uruguayan Pampa biome, to design a strategy towards the rediscovery, conservation, and sustainable use. Landraces diversity maintained in situ and ex situ is described, specific case studies are presented, and the main problems and tools towards landraces re-valorization are discussed. We show that traditional family farming systems maintain diverse vegetable species, mainly squashes (Cucurbita spp.), sweet potato (Ipomoea batatas), beans (Phaseolus spp.), onion (Allium cepa), peppers (Capsicum spp.), tomato (Solanum lycopersicum), next to leafy vegetables and maize, among others. We propose the priority of systematic surveys as a basis for monitoring genetic erosion, increasing complementariness between in situ and ex situ conservation, and implementing sustainable conservation and utilization. The case studies highlight genetic diversity within each cultivated species, with different crop physiological responses; disease resistances, different quality traits and associated uses, from animal feeding in maize to a range of culinary uses linked to traditional culture in maize and vegetable species, and ornamental uses of specific Capsicum and Cucurbita. Some landraces were the basis for breeding, where improved cultivars allowed the competitiveness of landrace germplasm in the markets. Renewed industrialized products allowed the competitive and sustainable use of Capsicum landraces in Brazilian farmers communities. Strategies towards in situ conservation improvements and valorization are discussed; emphasizing the role played by agroecology, community seed banks and custodian farmers, participatory plant breeding, promotion of landraces specialties among consumers, and the need of research and capacity building, among others. Farmers' participation in the decisions is a key factor, along with the academia and the public sector. Landraces and associated knowledge are treasures to be used to benefit from farmers to consumers, directing the course of agriculture towards sustainable directions.

2.
PLoS One ; 18(8): e0289984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590309

RESUMO

Thrips are a serious pest in many crops. In onion cultivation, Thrips tabaci is the most important, but not the only thrips species causing damage. We investigated which thrips species affects onion and related species worldwide, how much genetic variation there is within T. tabaci populations, and how this evolves. Furthermore, we determined the reproductive mode and the correlation between the genetic and geographic distances. Thrips samples from infested onions or related species were obtained from 14 different locations worldwide. Species and haplotypes were determined through DNA barcoding with the mitochondrial Cytochrome Oxidase subunit I (COI) gene. Thrips tabaci was the most commonly observed species, but Scirtothrips dorsalis, Thrips palmi, Frankliniella intonsa, Frankliniella occidentalis and Frankliniella tenuicornis were also found, especially at the beginning of the growing seasons and depending on the location. The Nei's genetic distance within T. tabaci was less than 5% and the haplotypes were clustered into two phylogenetic groups, each linked to a specific mode of reproduction, thelytokous or arrhenotokous. Thelytokous thrips were more common and more widely distributed than arrhenotokous thrips. A high percentage of heteroplasmy was detected in the arrhenotokous group. Heteroplasmic thrips were only found in populations where thelytokous and arrhenotokous were present in sympatry. Some T. tabaci haplotypes were present in high frequency at several sampled locations. No correlation was found between the genetic and geographic distances, which points to anthropic activities spreading thrips haplotypes throughout the world.


Assuntos
Allium , Tisanópteros , Animais , Tisanópteros/genética , Filogenia , Cebolas , Heteroplasmia
3.
Plant Dis ; 106(4): 1216-1225, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34818920

RESUMO

Onion is among the most consumed vegetables in Uruguay, grown in the northwestern and southern regions of the country. The onion supply presents interannual variations associated with significant postharvest losses, mainly caused by bacterial rots. Besides bulb rotting, onion leaf lesions as well as infections on seed-stalks during seed production may be devastating for some varieties under conducive conditions. This research aimed to identify the causal agents of bulb rots and leaf blight of onion crops in Uruguay. Symptomatic bulbs, seeds-stalks, and leaves were collected from commercial fields from 2015 to 2020. Bacterial colonies were isolated and identified at genera level using physiological tests and 16S rRNA gene sequence analysis. A collection of 59 Pantoea spp. isolates was obtained (11 from bulbs and 48 from leaves and seeds-stalks). Multilocus sequence analysis using four housekeeping genes (rpoB, gyrB, leuS, and fusA) allowed the assignment of the isolates to five Pantoea species: P. ananatis, P. agglomerans, P. allii, P. eucalypti, and P. vagans. The last two species were not previously reported as onion pathogens elsewhere. The ability to cause disease symptoms was tested by leaf inoculation and red onion scale assays. P. ananatis isolates showed the highest aggressiveness in both assays. Specific isolates from P. allii (MAI 6022), P. eucalypti (MAI 6036), P. vagans (MAI 6050), and Pantoea sp. (MAI 6049) ranked second in aggressiveness on onion leaves, whereas only three isolates belonging to P. eucalypti (MAI 6036 and MAI 6058) and P. agglomerans (MAI 6045) exhibited the same scale-clearing phenotype as P. ananatis. Leaf inoculation assays were also performed on a set of eight onion cultivars and breeding lines. Overall, P. ananatis MAI 6032 showed the highest aggressiveness in all tested cultivars, followed by P. eucalypti MAI 6036. The presence of new reported bacterial species leads to complex disease management and highlights the need for further studies on virulence factors and the epidemiology of these pathogens.


Assuntos
Eucalyptus , Pantoea , Produtos Agrícolas , Eucalyptus/genética , Cebolas/microbiologia , Pantoea/genética , Filogenia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Uruguai
4.
Front Plant Sci ; 12: 643787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777079

RESUMO

Pantoea ananatis is a gram-negative bacterium and the primary causal agent of center rot of onions in Georgia. Previous genomic studies identified two virulence gene clusters, HiVir and alt, associated with center rot. The HiVir gene cluster is required to induce necrosis on onion tissues via synthesis of pantaphos, (2-hydroxy[phosphono-methyl)maleate), a phosphonate phytotoxin. The alt gene cluster aids in tolerance to thiosulfinates generated during onion tissue damage. Whole genome sequencing of other Pantoea species suggests that these gene clusters are present outside of P. ananatis. To assess the distribution of these gene clusters, two PCR primer sets were designed to detect the presence of HiVir and alt. Two hundred fifty-two strains of Pantoea spp. were phenotyped using the red onion scale necrosis (RSN) assay and were genotyped using PCR for the presence of these virulence genes. A diverse panel of strains from three distinct culture collections comprised of 24 Pantoea species, 41 isolation sources, and 23 countries, collected from 1946-2019, was tested. There is a significant association between the alt PCR assay and Pantoea strains recovered from symptomatic onion (P < 0.001). There is also a significant association of a positive HiVir PCR and RSN assay among P. ananatis strains but not among Pantoea spp., congeners. This may indicate a divergent HiVir cluster or different pathogenicity and virulence mechanisms. Last, we describe natural alt positive [RSN+/HiVir+/alt +] P. ananatis strains, which cause extensive bulb necrosis in a neck-to-bulb infection assay compared to alt negative [RSN+/HiVir+/alt -] P. ananatis strains. A combination of assays that include PCR of virulence genes [HiVir and alt] and an RSN assay can potentially aid in identification of onion-bulb-rotting pathogenic P. ananatis strains.

5.
Environ Entomol ; 49(5): 1232-1241, 2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-32794559

RESUMO

Bees (Family Apidae) hold a key role as pollinators in a wide range of angiosperm communities. South America suffered strong modifications during the last decade due to increasing anthropic activities and the expansion of agricultural areas, particularly the boom of soybean. The goal of this research was to know the current diversity of bees in South and Low Littoral regions in Uruguay. Specimens were collected in the seasons 2015-2016 and 2016-2017 on natural meadows, cultivated grasslands, soybean fields, among others flowering communities. Collected specimens were classified following taxonomic keys. Forty-five bee species or taxa were distinguished belonging to the subfamilies Megachilinae (11), Apinae (22), Halictinae (7), Colletinae (2), and Andreninae (3). Most taxa were classified up to genus and 14 to species level. Bee diversity was higher for the South region, with traditional agriculture and rangelands, than that of the Low Littoral region where an increasing agricultural land use took place during the last decade, particularly soybean. In addition, this research aimed to study the presence of native bees and the introduced Apis mellifera (Apinae) in a soybean field at four transects located at 0, 50, 100, and 200 m from the crop border in both seasons. Native bee species were only present at 0 and 50 m, pointing to the relevance of natural edge plant communities for their preservation. This is the first survey on native bee diversity in Uruguay to be regarded as a baseline and the setup of conservation strategies.


Assuntos
Agricultura , Ecossistema , Animais , Abelhas , Família , Polinização , América do Sul , Uruguai
6.
Front Plant Sci ; 8: 1642, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033958

RESUMO

Bacterial wilt (BW) caused by Ralstonia solanacearum is responsible for substantial losses in cultivated potato (Solanum tuberosum) crops worldwide. Resistance genes have been identified in wild species; however, introduction of these through classical breeding has achieved only partial resistance, which has been linked to poor agronomic performance. The Arabidopsis thaliana (At) pattern recognition receptor elongation factor-Tu (EF-Tu) receptor (EFR) recognizes the bacterial pathogen-associated molecular pattern EF-Tu (and its derived peptide elf18) to confer anti-bacterial immunity. Previous work has shown that transfer of AtEFR into tomato confers increased resistance to R. solanacearum. Here, we evaluated whether the transgenic expression of AtEFR would similarly increase BW resistance in a commercial potato line (INIA Iporá), as well as in a breeding potato line (09509.6) in which quantitative resistance has been introgressed from the wild potato relative Solanum commersonii. Resistance to R. solanacearum was evaluated by damaged root inoculation under controlled conditions. Both INIA Iporá and 09509.6 potato lines expressing AtEFR showed greater resistance to R. solanacearum, with no detectable bacteria in tubers evaluated by multiplex-PCR and plate counting. Notably, AtEFR expression and the introgression of quantitative resistance from S. commersonii had a significant additive effect in 09509.6-AtEFR lines. These results show that the combination of heterologous expression of AtEFR with quantitative resistance introgressed from wild relatives is a promising strategy to develop BW resistance in potato.

7.
Front Plant Sci ; 8: 1424, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894453

RESUMO

Potato (Solanum tuberosum L.) is one of the main hosts of Ralstonia solanacearum, the causative agent of bacterial wilt. This plant pathogen bacteria produce asymptomatic latent infections that promote its global spread, hindering disease control. A potato breeding program is conducted in Uruguay based on the introgression of resistance from the wild native species S. commersonii Dun. Currently, several backcrosses were generated exploiting the high genetic variability of this wild species resulting in advanced interspecific breeding lines with different levels of bacterial wilt resistance. The overall aim of this work was to characterize the interaction of the improved potato germplasm with R. solanacearum. Potato clones with different responses to R. solanacearum were selected, and colonization, dissemination and multiplication patterns after infection were evaluated. A R. solanacearum strain belonging to the phylotype IIB-sequevar 1, with high aggressiveness on potato was genetically modified to constitutively generate fluorescence and luminescence from either the green fluorescence protein gene or lux operon. These reporter strains were used to allow a direct and precise visualization of fluorescent and luminescent cells in plant tissues by confocal microscopy and luminometry. Based on wilting scoring and detection of latent infections, the selected clones were classified as susceptible or tolerant, while no immune-like resistance response was identified. Typical wilting symptoms in susceptible plants were correlated with high concentrations of bacteria in roots and along the stems. Tolerant clones showed a colonization pattern restricted to roots and a limited number of xylem vessels only in the stem base. Results indicate that resistance in potato is achieved through restriction of bacterial invasion and multiplication inside plant tissues, particularly in stems. Tolerant plants were also characterized by induction of anatomical and biochemical changes after R. solanacearum infection, including hyperplasic activity of conductor tissue, tylose production, callose and lignin deposition, and accumulation of reactive oxygen species. This study highlights the potential of the identified tolerant interspecific potato clones as valuable genetic resources for potato-breeding programs and leads to a better understanding of resistance against R. solanacearum in potato.

8.
J Prosthet Dent ; 114(4): 482-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119018

RESUMO

The purpose of this technique was to eliminate excess cement from the implant restoration by using a 2-step cementation process. A custom acrylic resin abutment, a duplicate of the titanium abutment, is fabricated before the restoration is cemented. At cementation, cement is placed inside the restoration, which is placed onto the acrylic resin abutment outside the mouth. The majority of the excess cement from inside the restoration is expressed onto the acrylic resin abutment. The restoration is then placed on the titanium abutment inside the mouth. The result is a minimum amount of excess cement expressed intraorally. This technique minimizes the adverse biological consequences of leaving excess cement beneath implant-supported restorations.


Assuntos
Cimentação/métodos , Cimentos Dentários/química , Restauração Dentária Permanente/instrumentação , Restauração Dentária Permanente/métodos , Cimentação/instrumentação , Dente Suporte , Implantes Dentários , Retenção em Prótese Dentária , Prótese Dentária Fixada por Implante , Humanos
9.
Theor Appl Genet ; 122(5): 947-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21222096

RESUMO

The response of Allium cepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R') and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R' was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars.


Assuntos
Micorrizas/crescimento & desenvolvimento , Cebolas/crescimento & desenvolvimento , Cebolas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Simbiose , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Biomassa , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Genótipo , Glomeromycota/crescimento & desenvolvimento , Cebolas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Locos de Características Quantitativas , Solo/análise
10.
Environ Biosafety Res ; 9(3): 147-54, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21975255

RESUMO

The cultivation of genetically modified (GM) Bt maize (Zea mays L.) events MON810 and Bt11 is permitted in Uruguay. Local regulations specify that 10% of the crop should be a non-GM cultivar as refuge area for biodiversity, and the distance from other non-GM maize crops should be more than 250 m in order to avoid cross-pollination. However, the degree of cross-fertilization between maize crops in Uruguay is unknown. The level of adventitious presence of GM material in non-GM crops is a relevant issue for organic farming, in situ conservation of genetic resources and seed production. In the research reported here, the occurrence and frequency of cross-fertilization between commercial GM and non-GM maize crops in Uruguay was assessed. The methodology comprised field sampling and detection using DAS-ELISA and PCR. Five field-pair cases where GM maize crops were grown near non-GM maize crops were identified. These cases had the potential to cross-fertilize considering the distance between crops and the similarity of the sowing dates. Adventitious presence of GM material in the offspring of non-GM crops was found in three of the five cases. Adventitious presence of event MON810 or Bt11 in non-GM maize, which were distinguished using specific primers, matched the events in the putative sources of transgenic pollen. Percentages of transgenic seedlings in the offspring of the non-GM crops were estimated as 0.56%, 0.83% and 0.13% for three sampling sites with distances of respectively 40, 100 and 330 m from the GM crops. This is a first indication that adventitious presence of transgenes in non-GM maize crops will occur in Uruguay if isolation by distance and/or time is not provided. These findings contribute to the evaluation of the applicability of the "regulated coexistence policy" in Uruguay.


Assuntos
Fluxo Gênico , Plantas Geneticamente Modificadas , Transgenes , Zea mays/genética , Hibridização Genética , Uruguai
11.
Mycorrhiza ; 19(5): 317-328, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19301039

RESUMO

Diversity and colonization levels of naturally occurring arbuscular mycorrhizal fungi (AMF) in onion roots were studied to compare organic and conventional farming systems in the Netherlands. In 2004, 20 onion fields were sampled in a balanced survey between farming systems and between two regions, namely, Zeeland and Flevoland. In 2005, nine conventional and ten organic fields were additionally surveyed in Flevoland. AMF phylotypes were identified by rDNA sequencing. All plants were colonized, with 60% for arbuscular colonization and 84% for hyphal colonization as grand means. In Zeeland, onion roots from organic fields had higher fractional colonization levels than those from conventional fields. Onion yields in conventional farming were positively correlated with colonization level. Overall, 14 AMF phylotypes were identified. The number of phylotypes per field ranged from one to six. Two phylotypes associated with the Glomus mosseae-coronatum and the G. caledonium-geosporum species complexes were the most abundant, whereas other phylotypes were infrequently found. Organic and conventional farming systems had similar number of phylotypes per field and Shannon diversity indices. A few organic and conventional fields had larger number of phylotypes, including phylotypes associated with the genera Glomus-B, Archaeospora, and Paraglomus. This suggests that farming systems as such did not influence AMF diversity, but rather specific environmental conditions or agricultural practices.


Assuntos
Agricultura , Biodiversidade , Glomeromycota/isolamento & purificação , Micorrizas/isolamento & purificação , Cebolas/microbiologia , Raízes de Plantas/microbiologia , Agricultura/métodos , DNA Fúngico/genética , DNA Ribossômico/genética , Glomeromycota/classificação , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Micorrizas/classificação , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Países Baixos , Filogenia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...